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Here we show that chaos control techniques can be used to stabilize unstable periodic orbits in a non-
chaotic system provided additive noise can be utilized (1) to determine the local dynamics of a chosen or-
bit, and (2) to move the system’s trajectory into the neighborhood of the orbit so that control can be ini-
tiated. Using these techniques, we demonstrate that the qualitative dynamics of a nonchaotic system can
be altered without using large controls or large parameter shifts. Unlike classical control methods, this
approach requires no knowledge of the underlying system equations.

PACS number(s): 05.45.+b, 07.05.Dz

The original chaos control technique developed by Ott,
Grebogi, and Yorke (OGY) [1] is based on the fact that
there are an infinite number of unstable periodic orbits
embedded within a chaotic attractor. With this ap-
proach, a chaotic system is stabilized about one of these
periodic orbits by making small perturbations to an ac-
cessible system parameter such that the system’s trajecto-
ry is directed toward the attracting stable manifold of the
desired unstable periodic orbit. In this manner, OGY
control exploits the extreme sensitivity of chaos to initial
conditions. This method is a powerful experimental tool
because it requires no knowledge of the underlying sys-
tem equations, i.e., it models the dynamics of a system
directly from its time series. The OGY technique and
derivatives thereof have been used to control many
different chaotic systems [1,2].

Recently, the principles of chaos control have been uti-
lized by a technique called “tracking” [3] to stabilize un-
derlying unstable periodic orbits in nonchaotic systems.
Tracking constrains a system’s trajectory within a period-
ic orbit as the system is moved, via large parameter shifts,
through various bifurcations into a regime where the or-
bit is inherently unstable. Tracking can be initiated either
by following a stable periodic orbit into its unstable pa-
rameter regime, or by first controlling an unstable period-
ic orbit in the chaotic regime and then following it out of
chaos.

Tracking techniques are useful for stabilizing unstable
periodic orbits in nonchaotic systems which can tolerate
large parameter shifts. However, such methods are inap-
propriate for experimental systems which cannot be shift-
ed out of their natural parameter regime to access unsta-
ble periodic orbits. Here we describe a method based on
OGY control, which is suitable for such systems. With
this technique, additive noise is utilized (1) to determine
the local dynamics of a chosen unstable periodic orbit in
a nonchaotic system, and (2) to move the system’s trajec-
tory into the neighborhood of the orbit so that OGY con-
trol can be initiated [4]. In contrast to classical control
methods, this approach requires no knowledge of the un-
derlying system equations.

To investigate the feasibility of using this method to
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stabilize unstable periodic orbits in a nonchaotic system,
we considered the Hénon map with additive noise, as
given by the expression

x,=1.0—Ax?_,+Bx, ,+§&,, (1)

where A is an adjustable parameter, B =0.3, and §, is
Gaussian white noise with zero mean and standard devia-
tion o, Figure 1 shows the bifurcation diagram of the
noise-free (i.e., 0,=0.0) Hénon map as A4 is varied from
0.2 to 1.2. It can be seen that as A is increased, the
Hénon map undergoes the familiar period-doubling route
to chaos. In the present study, we kept the Hénon map
out of the chaotic regime by setting 4 to 1.00—for this
value of A4, the Hénon map exhibits a stable period-4 cy-
cle (Fig. 1).

Figure 2 shows Og Xy, and A for a representative
6000-point control trial. This figure illustrates the desta-
bilizing effects of additive noise and the subsequent utility
of OGY control. During the first 250 points, it can be
seen that for 0,=0.0 [Fig. 2(a)] and 4 =1.00 [Fig. 2(c)],
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FIG. 1. Bifurcation diagram of the Hénon map [Eq. (1)], with
B =0.3 and 0,=0.0 in the parameter range 0.2=< 4 =1.2. The
dashed line at 4 =1.00 identifies the stable period-4 cycle ana-
lyzed in this study.
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a randomly selected initial condition x, quickly settled
into the period-4 orbit [Fig. 2(b)] predicted by the bifur-
cation diagram of Fig. 1. As o, was uniformly increased
over the next 750 points (to a peak value of 0.0707 at
n =1000), the fluctuations in x, increased accordingly.
(At noise levels below o,~0.04, the maximum Lyapunov
exponent [5] for the system was negative; at noise levels
above o~ 0.04, the Hénon map was in a state of noise-
induced chaos [6], as indicated by a positive maximum
Lyapunov exponent.) After the additive noise reached its
peak intensity [Fig. 2(a)], a learning stage
(n =1000-2000) was initiated wherein (1) the position of
the unstable period-1 fixed point of the system was es-
timated, (2) the directions and rates of approach to (stable
manifold) and departure from (unstable manifold) the un-
stable fixed point were linearly approximated, and (3) the
sensitivity of the fixed point to small perturbations in pa-
rameter A (our chosen control parameter) was deter-
mined [7]. After the local dynamics of the unstable
period-1 fixed point were determined and once the system
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FIG. 2. (a) Standard deviation o of the additive noise, (b)
output x,, and (c) system parameter A4 during a representative
6000-point OGY control trial for the period-4 Hénon map
(A =1.00) with additive noise. The respective control stages
are annotated in (b) and (c).
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wandered into a small neighborhood surrounding the
fixed point, OGY control (n =2000-3500) was initiated
[8]. Adaptive perturbations made to A constrained the
system near the period-1 orbit [9] by forcing the system
onto the attracting stable manifold of the fixed point
whenever the system wandered away from the fixed
point. The significant reduction of fluctuations in x,, [Fig.
2(b)] from the precontrol stage to the control stage is evi-
dence of effective OGY control.

The relationship between the additive noise and the
effectiveness of OGY control was investigated during a
second control stage (n =4000-5500), which followed a
control inactivation period (n =3500-4000). At
n =4250, a 750-point uniform decrease in o ¢ was initiat-
ed [Fig. 2(a)]. As o, was decreased, the control of x,
[Fig. 2(b)] improved (i.e., the fluctuations in x, decreased)

N - No control

L - Learning stage

C1 - OGY period-1 control
C2 - OGY period-2 control

0.08 2
O 004 |
000 1 1 1 1 J
0 1000 2000 3000 4000 5000 6000
) b
Xn ' : —
P— N e
c1|c2\c1|N|c2_{
I i [ 1 1 "
3000 4000 5000 6000
13| AR -...\
12 € e 'NWWWWWW'
“[ ~—n=2710
1.1 / n
A 1.0_ R ———— _
09 - .
08FN | L | N |.C1 |.C | . Cl _|.N | C2 |
o O e T T T T
0 1000 2000 3000 4000 5000 6000

FIG. 3. (a) Standard deviation o of the additive noise, (b)
output x,, and (c) system parameter A4 during a representative
6000-point trial wherein OGY control was used to control the
period-4 Hénon map (4 =1.00) about its underlying unstable
period-1 and -2 orbits. The respective control stages are anno-
tated in (b) and (c). The additive noise was used initially to learn
the orbit dynamics and then to initiate each control stage. A
magnified plot of the variations in 4 during a portion of an
OGY period-1 control stage is shown in the inset in (c).
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until a clean period-1 orbit was obtained at » =5000,
which corresponded to the noise-free Hénon map, i.e.,
0=0.0 [Fig. 2(a)]. Note that because there was no qual-
itative difference in control effectiveness as the system
crossed out of noise-induced chaos (at agzo. 04), the suc-
cess of OGY control in this case can be attributed to the
presence of an underlying unstable periodic fixed point in
the system, as opposed to the presence of (noise-induced)
chaos. In fact, qualitatively similar results could have
been obtained by keeping the Hénon map out of a state of
noise-induced chaos (e, by keeping 0,<0.04)
throughout the trial shown in Fig. 2—the larger levels of
noise served only to decrease the amount of time needed
to learn the local dynamics of the unstable period-1 fixed
point and subsequently move the system into a small
neighborhood surrounding the fixed point (so as to ini-
tiate OGY control).

Finally, at » =5500, OGY control was turned off, and
parameter A was returned to its original value of 1.00
[Fig. 2(c)]. As expected, x,, quickly departed from the un-
stable periodic fixed point and returned to its original,
stable period-4 orbit [Fig. 2(b)]. Because the estimation of
the position of the unstable period-1 fixed point for the
period-4 Hénon map was inexact (due to the presence of
the additive noise &£,), the OGY perturbations to 4 were
made about a value of ~0.98 rather than 1.00; hence the
jump in A4 at n =5500 [Fig. 2(c)].

The successful noise-free period-1 control in Fig. 2
(n =5000-5500) suggests that it is possible to use our
method to remove higher-order periodicities from the
steady-state output of nonchaotic systems. This issue is
explored in Fig. 3. The first 500 points of Fig. 3(b) show
the output of the noise-free, period-4 Hénon map, i.e.,
0,=0.0 [Fig. 3(a)] and 4 =1.00 [Fig. 3(c)]. To deter-
mine the local dynamics of the system’s underlying unsta-
ble period-1 fixed point, noise was added temporarily
(n =500-1500) to the system [Fig. 3(a)]. Once the learn-
ing stage was completed the noise was turned off [10],
and the system quickly returned to its stable period-4 or-
bit. To initiate period-1 OGY control, a burst of noise
[seen as a pulse in Fig. 3(a)] was added to the system at
n =2250. Once the system’s state point wandered near
the unstable period-1 fixed point, the noise was turned off
and control was initiated. The system was then success-
fully controlled about its unstable period-1 orbit by intro-
ducing small, adaptive perturbations to parameter A.
The inset in Fig. 3(c) shows that even as the system’s state
point was controlled near the unstable period-1 fixed
point, small perturbations in 4 were always required.

In Fig. 3 (starting at » =3000), we also show that a
similar control procedure, which applies OGY-type con-
trol interventions every other map iterate [seen as
AF*1.00 for every other point in Fig. 3(c)], can be used
to stabilize the system about an unstable period-2 orbit.
The position and local dynamics of the unstable period-2
fixed point were determined during the initial learning
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stage (n =500-1500), along with the position and local
dynamics of the unstable period-1 fixed point. Using brief
bursts of noise to initiate each additional control stage
[Fig. 3(a)], the system was moved successfully from a con-
trolled period-1 orbit to a controlled period-2 orbit
(n =3000-3750), and then back to the period-1 orbit
(n =3750-4500). To illustrate the instability of the con-
trolled periodic orbits, parameter 4 was held equal to its
final control value ( 4 =1.01) after period-1 OGY control
was turned off at n =4500 [Fig. 3(c)]. As expected, x,
quickly wandered away from the unstable period-1 orbit
and settled into another stable period-4 orbit [Fig. 3(b)].
The final segment of Fig. 3 (n =5250-6000) shows suc-
cessful period-2 OGY control activated directly from the
stable period-4 orbit.

The system controlled in Fig. 3 existed in a state rela-
tively close to the chaotic regime (see Fig. 1). To explore
the feasibility of using our technique to stabilize unstable
periodic orbits in systems not on the verge of chaos, we
considered the period-2 Hénon map with 4 =0.37 and
0.50, respectively. For A4 =0.37, the noise intensity
needed to implement effective period-1 control [11] was
less than that required for the system in Fig. 3, whereas
the noise intensity needed for 4 =0.50 was greater than
that required for the system in Fig. 3. For a given sys-
tem, the noise intensity required to access its unstable
periodic orbits will be dependent upon certain system
characteristics, such as orbit stability and location.
These analyses demonstrate that our method is applicable
to systems both near and far from chaos.

This work clearly shows that the small, adaptive per-
turbations of chaos control can be used, without large pa-
rameter shifts, to stabilize unstable periodic orbits in a
nonchaotic system. This is in contrast to tracking [3],
which requires large parameter shifts to access and stabi-
lize unstable periodic orbits in nonchaotic systems.
These findings challenge the previously accepted notion
that the qualitative dynamics of a nonchaotic system can-
not be altered without large controls and/or large system
modifications [1,12]. Importantly, as with OGY control
of chaotic systems and in contrast to classical control
methods, noise-initiated OGY control of nonchaotic sys-
tems requires no knowledge of the underlying system
equations. These developments open up a number of po-
tential applications for chaos control techniques. For in-
stance, our method may offer an efficient means for re-
moving higher-order periodicities from the output of
nonchaotic, experimental systems. From a physiological
standpoint, this could be important given that a number
of pathological conditions are associated with the appear-
ance of unwanted higher-order oscillations [13].
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